Đề Thi Vào Lớp 10 Môn Toán

Lớp 1

Lớp 2

Lớp 2 - liên kết tri thức

Lớp 2 - Chân trời sáng sủa tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Sách giáo khoa

Tài liệu tham khảo

Sách VNEN

Lớp 4

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 6

Lớp 6 - kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề và Trắc nghiệm

IT

Ngữ pháp tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Nhằm giúp các bạn ôn luyện và giành được kết quả cao trong kì thi tuyển sinh vào lớp 10, hcdnn.com biên soạn tuyển tập Đề thi vào lớp 10 môn Toán (có đáp án) theo kết cấu ra đề Trắc nghiệm - từ luận mới. Cùng rất đó là các dạng bài xích tập hay bao gồm trong đề thi vào lớp 10 môn Toán với cách thức giải đưa ra tiết. Mong muốn tài liệu này sẽ giúp đỡ học sinh ôn luyện, củng cố kiến thức và kỹ năng và chuẩn bị tốt mang lại kì thi tuyển chọn sinh vào lớp 10 môn Toán năm 2022.

Bạn đang xem: Đề thi vào lớp 10 môn toán

I/ Đề thi môn Toán vào lớp 10 (không chuyên)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 bao gồm đáp án (Trắc nghiệm - từ luận)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 có đáp án (Tự luận)

Bộ Đề thi vào lớp 10 môn Toán TP tp. Hà nội năm 2021 - 2022 có đáp án

II/ Đề thi môn Toán vào lớp 10 (chuyên)

III/ các dạng bài xích tập ôn thi vào lớp 10 môn Toán

Tài liệu ôn thi vào lớp 10 môn Toán

Sở giáo dục và đào tạo và Đào chế tạo .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Câu 1: (2 điểm) Rút gọn gàng biểu thức sau:

a) A=12−253+60.

b) B=4xx−3.x2−6x+9x với 0 x2−2mx+m2−m+3=0 (1), cùng với m là tham số.

a) Giải phương trình (1) với m = 4.

b) Tìm những giá trị của m nhằm phương trình (1) tất cả hai nghiệm với biểu thức: P=x1x2−x1−x2 đạt giá bán trị nhỏ tuổi nhất.

Câu 3: (1,5 điểm)

Tình cảm mái ấm gia đình có sức khỏe phi trường. Các bạn Vì quyết chiến – Cậu bé nhỏ 13 tuổi qua thương nhớ em trai của chính mình đã vượt qua một quãng con đường dài 180km từ tô La đến khám đa khoa Nhi Trung ương hà nội thủ đô để thăm em. Sau thời điểm đi bằng xe đạp điện 7 giờ, chúng ta ấy được lên xe cộ khách và đi tiếp 1 giờ 1/2 tiếng nữa thì đến nơi. Biết tốc độ của xe pháo khách to hơn vận tốc của xe đạp là 35 km/h. Tính tốc độ xe đạp của người tiêu dùng Chiến.

Câu 4: (3,0 điểm)

mang đến đường tròn (O) tất cả hai đường kính AB với MN vuông góc cùng với nhau. Trên tia đối của tia MA đem điểm C không giống điểm M. Kẻ MH vuông góc với BC (H nằm trong BC).

a) chứng minh BOMH là tứ giác nội tiếp.

b) MB giảm OH tại E. Chứng tỏ ME.MH = BE.HC.

c) hotline giao điểm của mặt đường tròn (O) với con đường tròn nước ngoài tiếp ∆MHC là K. Chứng tỏ 3 điểm C, K, E thẳng hàng.

Câu 5: (1,0 điểm) Giải phương trình: 5x2+27x+25−5x+1=x2−4.

 

HƯỚNG DẪN GIẢI ĐỀ SỐ 03

Câu 1:

a) A=12−253+60=36−215+215=36=6

b) với 0 B=4xx−3.x2−6x+9x =2xx−3.x−32x=−2x3−x.x−3x=−2x3−x3−xx=−2

Câu 2:

1) vị đồ thị hàm số đi qua điểm M(1; –1) bắt buộc a+ b = -1

vật dụng thị hàm số trải qua điểm N(2; 1) đề nghị 2a + b = 1

yêu thương cầu bài toán a+b=−12a+b=1⇔a=2b=−3

Vậy hàm số buộc phải tìm là y = 2x – 3.

2)

a) với m = 4, phương trình (1) trở thành: x2−8x+15=0. Có Δ=1>0

Phương trình tất cả hai nghệm phân biệt x1=3; x2=5;

b) Ta có: ∆" = −m2−1.m2−m+3=m2−m2+m−3=m−3.

Phương trình (1) bao gồm hai nghiệm x1, x2 khi ∆" 0 ⇔ m−3≥0⇔m≥3

Với m≥3, theo định lí Vi–ét ta có: x1+x2=2mx1.x2=m2−m+3

Theo bài bác ra: P=x1x2−x1−x2=x1x2−(x1+x2)

Áp chạm định lí Vi–ét ta được:

P=m2−m+3−2m=m2−3m+3 =m(m−3)+3

vì m≥3 nên m(m−3)≥0 , suy ra P≥3. Dấu " = " xảy ra khi m = 3.

Vậy giá trị nhỏ nhất của phường là 3 lúc m = 3.

Câu 3:

Đổi 1 giờ 1/2 tiếng = 1,5 giờ.

Xem thêm: Phát Biểu Cảm Nhận Bài Thơ Tây Tiến Hay Chọn Lọc, Cảm Nhận Về Bài Thơ Tây Tiến Của Quang Dũng

Gọi tốc độ xe đạp của công ty Chiến là x (km/h, x > 0)

gia tốc của xe hơi là x + 35 (km/h)

Quãng đường chúng ta Chiến đi bằng xe đạp điện là: 7x (km)

Quãng đường chúng ta Chiến đi bằng xe hơi là: 1,5(x + 35)(km)

bởi vì tổng quãng đường chúng ta Chiến đi là 180km buộc phải ta bao gồm phương trình:

7x + 1,5(x + 35) = 180 7x + 1,5x + 52,2 = 180 8,5x = 127,5 x = 15

(thỏa mãn)

Vậy bạn Chiến đi bằng xe đạp với gia tốc là 15 km/h.

Câu 4:

*

a) Ta có: MOB^=900 (do AB⊥MN) và MHB^=900(do MH⊥BC)

Suy ra: MOB^+MHB^=900+900=1800

=> Tứ giác BOMH nội tiếp.

b) ∆OMB vuông cân nặng tại O buộc phải OBM^=OMB^ (1)

Tứ giác BOMH nội tiếp bắt buộc OBM^=OHM^ (cùng chắn cung OM)

với OMB^=OHB^ (cùng chắn cung OB) (2)

trường đoản cú (1) cùng (2) suy ra: OHM^=OHB^

=> HO là tia phân giác của MHB^ => MEBE=MHHB (3)

Áp dụng hệ thức lượng trong ∆BMC vuông tại M gồm MH là đường cao

Ta có: HM2=HC.HB⇒HMHB=HCHM (4)

trường đoản cú (3) với (4) suy ra: MEBE=HCHM5⇒ME.HM=BE.HC (đpcm)

c) bởi vì MHC^=900(do MH⊥BC) cần đường tròn nước ngoài tiếp ∆MHC có 2 lần bán kính là MC

⇒MKC^=900 (góc nội tiếp chắn nửa mặt đường tròn)

MN là đường kính của con đường tròn (O) nên MKN^=900 (góc nội tiếp chắn nửa con đường tròn)

⇒MKC^+MKN^=1800

=> 3 điểm C, K, N thẳng mặt hàng (*)

∆MHC ∽ ∆BMC (g.g) ⇒HCMH=MCBM. 

nhưng mà MB = BN (do ∆MBN cân nặng tại B)

=>HCHM=MCBN, kết hợp với MEBE=HCHM (theo (5) )

Suy ra: MCBN=MEBE . Nhưng mà EBN^=EMC^=900 => ∆MCE ∽ ∆BNE (c.g.c)

⇒MEC^=BEN^, mà MEC^+BEC^=1800 (do 3 điểm M, E, B thẳng hàng)

⇒BEC^+BEN^=1800

=> 3 điểm C, E, N thẳng sản phẩm (**)

từ (*) cùng (**) suy ra 4 điểm C, K, E, N thẳng hàng

=> 3 điểm C, K, E thẳng mặt hàng (đpcm)

Câu 5: ĐKXĐ: x≥2

Ta có: 5x2+27x+25−5x+1=x2−4

⇔5x2+27x+25=5x+1+x2−4

⇔5x2+27x+25=x2−4+25x+25+10(x+1)(x2−4)

⇔4x2+2x+4=10x+1)(x2−4)⇔2x2+x+2=5(x+1)(x2−4) (1)

cách 1:

(1) ⇔x2−2x−44x2−13x−26=0

Giải ra được:

x=1−5(loại); x=1+5(nhận); x=13+3658 (nhận); x=13−3658 (loại)

giải pháp 2:

(1) ⇔5x2−x−2x+2=2x2−x−2+3x+2 (2)

Đặt a=x2−x+2; b=x+2 (a≥0; b≥0)

dịp đó, phương trình (2) trở thành:

5ab=2a2+3b2⇔2a2−5ab+3b2=0⇔a−b2a−3b=0⇔a=b2a=3b (*)

 – cùng với a = b thì x2−x−2=x+2⇔x2−2x−4⇔x=1−5(ktm)x=1+5(tm)

 – với 2a = 3b thì 2x2−x−2=3x+2⇔4x2−13x−26=0⇔x=13+3658 (tm)x=13−3658 (ktm)

Vậy phương trình đã cho gồm hai nghiệm: x=1+5 và x=13+3658 .

Sở giáo dục và Đào tạo nên .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Sở giáo dục đào tạo và Đào sản xuất .....

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện khẳng định của biểu thức

*
là:

A.x ≠ 0 B.x ≥ 1 C.x ≥ 1 hoặc x 2 và đường thẳng (d) y =

*
+ 3

A. (2; 2)B. ( 2; 2) cùng (0; 0)

C.(-3; ) D.(2; 2) cùng (-3; )

Câu 5: quý giá của k nhằm phương trình x2 + 3x + 2k = 0 có 2 nghiệm trái lốt là:

A. K > 0B. K 2 D. K (2 điểm)

1) Thu gọn gàng biểu thức

*

2) giải phương trình với hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

*

Bài 2: (1,5 điểm) Trong mặt phẳng tọa độ Oxy đến Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) với m = -1 , hãy vẽ 2 trang bị thị hàm số trên cùng một hệ trục tọa độ

b) kiếm tìm m để (d) với (P) cắt nhau trên 2 điểm rõ ràng : A (x1; y1 );B(x2; y2) làm thế nào để cho tổng các tung độ của hai giao điểm bởi 2 .

Bài 3: (1 điểm) Rút gọn gàng biểu thức sau:

*

Tìm x để A (3,5 điểm) cho đường tròn (O) tất cả dây cung CD cầm định. Call M là vấn đề nằm ở chính giữa cung nhỏ tuổi CD. Đường kính MN của đường tròn (O) cắt dây CD tại I. Rước điểm E bất kỳ trên cung phệ CD, (E khác C,D,N); ME cắt CD trên K. Những đường thẳng NE cùng CD cắt nhau tại P.

a) minh chứng rằng :Tứ giác IKEN nội tiếp

b) triệu chứng minh: EI.MN = NK.ME

c) NK giảm MP tại Q. Hội chứng minh: IK là phân giác của góc EIQ

d) trường đoản cú C vẽ mặt đường thẳng vuông góc với EN giảm đường trực tiếp DE tại H. Chứng tỏ khi E di động cầm tay trên cung phệ CD (E khác C, D, N) thì H luôn chạy trên một đường nắm định.

Phần I. Trắc nghiệm

1.C2.D3.A4.D
5.B6.A7.D8.B

Phần II. Từ bỏ luận

Bài 1:

*

2) a) 3x2 + 5x - 8 = 0

Δ = 52 - 4.3.(-8) = 121 => √Δ = 11

*

Vậy phương trình đã cho bao gồm tập nghiệm là S =

*

b) (x2 + 3)2 = 3(x2 + 3) + 4

Đặt x2 + 3 = t (t ≥ 3), phương trình vẫn cho trở thành

t2 - 3t - 4 = 0

Δ = 32 - 4.(-4) = 25> 0

Phương trình tất cả 2 nghiệm riêng biệt :

*

Do t ≥ 3 nên t = 4

Với t = 4, ta có: x2 + 3 = 4 ⇔ x2 = 1 ⇔ x = ±1

Vậy phương trình vẫn cho tất cả 2 nghiệm x = ± 1

*

Bài 2:

Trong khía cạnh phẳng tọa độ Oxy mang lại Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) cùng với m = 1; (d): y = 2x – 1

Bảng quý giá

x01
y = 2x – 1-11

(P) : y = x2

Bảng giá trị

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị hàm số y = x2 là mặt đường parabol nằm phía trên trục hoành, dấn Oy làm trục đối xứng với nhận điểm O(0; 0) là đỉnh và điểm thấp độc nhất vô nhị

*

b) mang lại Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

Phương trình hoành độ giao điểm của (P) với (d) là:

x2 = 2mx - 2m + 1

⇔ x2 - 2mx + 2m - 1 = 0

Δ" = mét vuông - (2m - 1)=(m - 1)2

(d) với (P) cắt nhau trên 2 điểm tách biệt khi và chỉ khi phương trình hoành độ giao điểm gồm 2 nghiệm rành mạch

⇔ Δ" > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Khi đó (d) cắt (P) trên 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)

Theo định lí Vi-et ta có: x1 + x2 = 2m

Từ mang thiết đề bài, tổng các tung độ giao điểm bằng 2 nên ta có:

2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2

⇔ 2m (x1 + x2) – 4m + 2 = 2

⇔ 4m2 - 4m = 0 ⇔ 4m(m - 1) = 0

*

Đối chiếu với điều kiện m ≠ 1, thì m = 0 thỏa mãn.

Bài 3:

*

A > 0 ⇔

*
> 0 ⇔ 5 - 5√x > 0 ⇔ √x 0 lúc 0 ∠KIN = 90o

Xét tứ giác IKEN có:

∠KIN = 90o

∠KEN = 90o (góc nội tiếp chắn nửa con đường tròn)

=> ∠KIN + ∠KEN = 180o

=> Tứ giác IKEN là tứ giác nội tiếp

b) Xét ΔMEI với ΔMNK có:

∠NME là góc chung

∠IEM = ∠MNK ( 2 góc nội tiếp thuộc chắn cung IK)

=> ΔMEI ∼ ΔMNK (g.g)

*
=>EI.MN = NK.ME

c) Xét tam giác MNP có:

ME ⊥ NP; PI ⊥ MN

ME giao PI tại K

=> K là trực vai trung phong của tam giác MNP

=> ∠NQP = 90o

Xét tứ giác NIQP có:

∠NQP = 90o

∠NIP = 90o

=> 2 đỉnh Q, I cùng nhìn cạnh NP dưới 1 góc bằng nhau

=> tứ giác NIQP là tứ giác nội tiếp

=> ∠QIP = ∠QNP (2 góc nội tiếp thuộc chắn cung PQ)(1)

Mặt không giống IKEN là tứ giác nội tiếp

=> ∠KIE = ∠KNE (2 góc nội tiếp thuộc chắn cung KE)(2)

Từ (1) và (2)

=> ∠QIP = ∠KIE

=> IE là tia phân giác của ∠QIE

d) Ta có:

*

Mà ∠DEM = ∠MEC (2 góc nội tiếp chắn 2 cung bởi nhau)

=> ∠EHC = ∠ECH => ΔEHC cân nặng tại E

=> EN là con đường trung trực của CH

Xét con đường tròn (O) có: Đường kính OM vuông góc với dây CD trên I

=> NI là đường trung trực của CD => NC = ND

EN là con đường trung trực của CH => NC = NH

=> N là vai trung phong đường tròn ngoại tiếp tam giác DCH

=> H ∈ (N, NC)

Mà N, C cố định => H thuộc con đường tròn cố định

Sở giáo dục đào tạo và Đào sản xuất .....

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Bài 1 : ( 1,5 điểm)

1) Rút gọn gàng biểu thức sau:

*

2) mang lại biểu thức

*

a) Rút gọn gàng biểu thức M.

b) Tìm các giá trị nguyên của x để giá trị khớp ứng của M nguyên.

Bài 2 : ( 1,5 điểm)

1) tìm kiếm m nhằm hai phương trình sau có ít nhất một nghiệm chung:

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

2) Tìm thông số a, b của con đường thẳng y = ax + b biết con đường thẳng trên đi qua hai điểm là

(1; -1) cùng (3; 5)

Bài 3 : ( 2,5 điểm)

1) mang lại Phương trình :x2 + (m - 1) x + 5m - 6 = 0

a) giải phương trình khi m = - 1

b) kiếm tìm m để 2 nghiệm x1 và x2 thỏa mãn nhu cầu hệ thức: 4x1 + 3x2 = 1

2) Giải việc sau bằng cách lập phương trình hoặc hệ phương trình

Một công ty vận tải đường bộ điều một trong những xe sở hữu để chở 90 tấn hàng. Lúc tới kho mặt hàng thì có 2 xe cộ bị hỏng phải để chở hết số mặt hàng thì từng xe còn sót lại phải chở thêm 0,5 tấn so với dự định ban đầu. Hỏi số xe pháo được điều mang lại chở sản phẩm là từng nào xe? Biết rằng khối lượng hàng chở sinh hoạt mỗi xe cộ là như nhau.

Bài 4 : ( 3,5 điểm)

1) cho (O; R), dây BC thắt chặt và cố định không đi qua tâm O, A là điểm bất kì trên cung béo BC. Bố đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.

a) minh chứng tứ giác HDBF, BCEF nội tiếp

b) K là điểm đối xứng của A qua O. Chứng tỏ HK trải qua trung điểm của BC

c) Gỉa sử ∠BAC = 60o. Chứng tỏ Δ AHO cân

2) Một hình chữ nhật bao gồm chiều lâu năm 3 cm, chiều rộng bởi 2 cm, xoay hình chữ nhật này một vòng quanh chiều dài của chính nó được một hình trụ. Tính diện tích s toàn phần của hình trụ.

Bài 5 : ( 1 điểm)

1) cho a, b là 2 số thực làm sao để cho a3 + b3 = 2. Chứng minh:

0 √x - 1 ∈ Ư (2)

√x - 1 ∈ ±1; ±2

Ta bao gồm bảng sau:

√x-1- 2-112
√x-1023
xKhông trường tồn x049

Vậy với x = 0; 4; 9 thì M nhận quý hiếm nguyên.

Bài 2 :

1)

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

Đặt y = x2,khi đó ta có:

*

Giải (*):

(6 - 3m)x = -12

Phương trình (*) bao gồm nghiệm 6 - 3m ≠ 0 m ≠ 2

Khi đó, phương trình gồm nghiệm:

*

Theo phương pháp đặt, ta có: y = x2

*

=>16(m-2) = 16

m = 3

Thay m= 3 vào 2 phương trình ban đầu,ta có:

*

Vậy lúc m =3 thì nhì phương trình trên bao gồm nghiệm thông thường và nghiệm chung là 4

2) Tìm hệ số a, b của con đường thẳng y = ax + b biết đường thẳng trên đi qua hai điểm là

(1; -1) cùng (3; 5)

Đường trực tiếp y = ax + b trải qua hai điểm (1; -1) và (3; 5) phải ta có:

*

Vậy mặt đường thẳng yêu cầu tìm là y = 2x – 3

Bài 3 :

1) cho Phương trình : x2 + (m - 1)x + 5m - 6 = 0

a) lúc m = -1, phương trình trở thành:

x2 - 2x - 11 = 0

Δ" = 1 + 11=12 => √(Δ") = 2√3

Phương trình bao gồm nghiệm:

x1 = 1 + 2√3

x2 = 1 - 2√3

Vậy hệ phương trình gồm tập nghiệm là:

S =1 + 2√3; 1 - 2√3

b)

x2 + (m - 1)x + 5m - 6 = 0

Ta có:

Δ = (m - 1)2 - 4(5m - 6)

Δ = m2 - 2m + 1 - 20m + 24 = m2 - 22m + 25

Phương trình có hai nghiệm ⇔ Δ ≥ 0 ⇔ mét vuông - 22m + 25 ≥ 0,(*)

Theo hệ thức Vi-ét ta có:

*

Theo đề bài bác ta có:

4x1 + 3x2 =1 ⇔ x1 + 3(x1 + x2 ) = 1

⇔ x1 + 3(1 - m) = 1

⇔ x1= 3m - 2

=> x2 = 1 - m - x1 = 1 - m - (3m - 2) = 3 - 4m

Do kia ta có:

(3m - 2)(3 - 4m) = 5m - 6

⇔ 9m - 12m2 - 6 + 8m = 5m - 6

⇔ - 12m2 + 12m = 0

⇔ -12m(m - 1) = 0

*

Thay m = 0 vào (*) thấy thảo mãn

Thay m = 1 vào (*) thấy thảo mãn

Vậy gồm hai giá trị của m vừa lòng bài toán là m = 0 và m = 1.

2)

Gọi số lượng xe được điều cho là x (xe) (x > 0; x ∈ N)

=>Khối lượng sản phẩm mỗi xe pháo chở là:

*
(tấn)

Do có 2 xe pháo nghỉ buộc phải mỗi xe còn lại phải chở thêm 0,5 tấn so với dự tính nên mỗi xe nên chở:

*

Khi đó ta gồm phương trình:

*
.(x-2)=90

=>(180 + x)(x - 2) = 180x

x2 - 2x - 360 = 0

*

Vậy số xe cộ được điều mang đến là trăng tròn xe

Bài 4 :

*

a) Xét tứ giác BDHF có:

∠BDH = 90o (AD là mặt đường cao)

∠BFH = 90o (CF là mặt đường cao)

=>∠BDH + ∠BFH = 180o

=> Tứ giác BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có:

∠BFC = 90o (CF là mặt đường cao)

∠BEC = 90o (BE là con đường cao)

=> 2 đỉnh E với F cùng quan sát cạnh BC bên dưới 1 góc vuông

=> Tứ giác BCEF là tứ giác nội tiếp

b) Ta có:

∠KBA) = 90o (góc nội tiếp chắn nửa mặt đường tròn)

=>KB⊥AB

Mà CH⊥AB (CH là đường cao)

=> KB // CH

Tương tự:

∠KCA) = 90o (góc nội tiếp chắn nửa con đường tròn)

=>KC⊥AC

BH⊥AC (BH là mặt đường cao)

=> HB // chồng

Xét tứ giác BKCF có:

KB // CH

HB // CK

=> Tứ giác BKCH là hình bình hành

=> hai đường chéo BC cùng KH cắt nhau tại trung điểm mỗi đường

=> HK đi qua trung điểm của BC

c) điện thoại tư vấn M là trung điểm của BC

Xét tam giác AHK có:

O là trung điểm của AK

M là trung điểm của BC

=> OM là con đường trung bình của tam giác AHK

=> OM = AH (1)

ΔBOC cân nặng tại O gồm OM là trung đường

=> OM là tia phân giác của ∠BOC

=> ∠MOC = ∠BAC = 60o (= ∠BOC )

Xét tam giác MOC vuông trên M có:

OM = OC.cos⁡(MOC) = OC.cos⁡60o= OC = OA (2)

Từ (1) cùng (2) => OA = AH => ΔOAH cân nặng tại A

2)

Quay hình chữ nhật vòng quanh chiều dài được một hình tròn trụ có bán kính đáy là R= 2 cm, độ cao là h = 3 cm